跳转至内容
Merck

Regulation of axon regeneration by the RNA repair and splicing pathway.

Nature neuroscience (2015-05-12)
Yuanquan Song, David Sretavan, Ernesto A Salegio, Jim Berg, Xi Huang, Tong Cheng, Xin Xiong, Shan Meltzer, Chun Han, Trong-Tuong Nguyen, Jacqueline C Bresnahan, Michael S Beattie, Lily Yeh Jan, Yuh Nung Jan
摘要

Mechanisms governing a neuron's regenerative ability are important but not well understood. We identify Rtca (RNA 3'-terminal phosphate cyclase) as an inhibitor of axon regeneration. Removal of Rtca cell-autonomously enhanced axon regrowth in the Drosophila CNS, whereas its overexpression reduced axon regeneration in the periphery. Rtca along with the RNA ligase Rtcb and its catalyst Archease operate in the RNA repair and splicing pathway important for stress-induced mRNA splicing, including that of Xbp1, a cellular stress sensor. Drosophila Rtca and Archease had opposing effects on Xbp1 splicing, and deficiency of Archease or Xbp1 impeded axon regeneration in Drosophila. Moreover, overexpressing mammalian Rtca in cultured rodent neurons reduced axonal complexity in vitro, whereas reducing its function promoted retinal ganglion cell axon regeneration after optic nerve crush in mice. Our study thus links axon regeneration to cellular stress and RNA metabolism, revealing new potential therapeutic targets for treating nervous system trauma.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗NeuN抗体,克隆A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
抗-神经丝200 兔抗, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anti-RTCA antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-RTCD1 antibody produced in rabbit, affinity isolated antibody