- Mesoporous TiO₂ nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides.
Mesoporous TiO₂ nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides.
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08-0.60 ng L(-1)) and wide linearity (5-5000 ng L(-1)) were achieved under the optimal conditions. The repeatabilities (n=5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n=3) of fiber-to-fiber were in the range of 3.7-15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.