跳转至内容
Merck

The frog inner ear: picture perfect?

Journal of the Association for Research in Otolaryngology : JARO (2015-01-30)
Matthew J Mason, Johannes M Segenhout, Ariadna Cobo-Cuan, Patricia M Quiñones, Pim van Dijk
摘要

Many recent accounts of the frog peripheral auditory system have reproduced Wever's (1973) schematic cross-section of the ear of a leopard frog. We sought to investigate to what extent this diagram is an accurate and representative depiction of the anuran inner ear, using three-dimensional reconstructions made from serial sections of Rana pipiens, Eleutherodactylus limbatus and Xenopus laevis. In Rana, three discrete contact membranes were found to separate the posterior otic (=endolymphatic) labyrinth from the periotic (=perilymphatic) system: those of the amphibian and basilar recesses and the contact membrane of the saccule. The amphibian 'tegmentum vasculosum' was distinguishable as a thickened epithelial lining within a posterior recess of the superior saccular chamber. These features were also identified in Eleutherodactylus, but in this tiny frog the relative proportions of the semicircular canals and saccule resemble those of ranid tadpoles. There appeared to be a complete fluid pathway between the right and left periotic labyrinths in this species, crossing the cranial cavity. Xenopus lacks a tegmentum vasculosum and a contact membrane of the saccule; the Xenopus ear is further distinguished by a lateral passage separating stapes from periotic cistern and a more direct connection between periotic cistern and basilar recess. The basilar and lagenar recesses are conjoined in this species. Wever's diagram of the inner ear of Rana retains its value for diagrammatic purposes, but it is not anatomically accurate or representative of all frogs. Although Wever identified the contact membrane of the saccule, most recent studies of frog inner ear anatomy have overlooked both this and the amphibian tegmentum vasculosum. These structures deserve further attention.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醛 溶液, for molecular biology, 36.5-38% in H2O
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
甲醛 溶液, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Supelco
甲醛 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
乙二胺四乙酸, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
甲醛 溶液, tested according to Ph. Eur.
Sigma-Aldrich
乙二胺四乙酸, ≥98.0% (KT)
Sigma-Aldrich
甲醛-12C 溶液, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
乙二胺四乙酸, BioUltra, ≥99.0% (KT)