跳转至内容
Merck
  • KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state.

KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state.

The Journal of endocrinology (2014-06-04)
Hidetada Ogata, Yusuke Seino, Norio Harada, Atsushi Iida, Kazuyo Suzuki, Takako Izumoto, Kota Ishikawa, Eita Uenishi, Nobuaki Ozaki, Yoshitaka Hayashi, Takashi Miki, Nobuya Inagaki, Shin Tsunekawa, Yoji Hamada, Susumu Seino, Yutaka Oiso
摘要

Glucose-dependent insulinotropic polypeptide (GIP), a gut hormone secreted from intestinal K-cells, potentiates insulin secretion. Both K-cells and pancreatic β-cells are glucose-responsive and equipped with a similar glucose-sensing apparatus that includes glucokinase and an ATP-sensitive K(+) (KATP) channel comprising KIR6.2 and sulfonylurea receptor 1. In absorptive epithelial cells and enteroendocrine cells, sodium glucose co-transporter 1 (SGLT1) is also known to play an important role in glucose absorption and glucose-induced incretin secretion. However, the glucose-sensing mechanism in K-cells is not fully understood. In this study, we examined the involvement of SGLT1 (SLC5A1) and the KATP channels in glucose sensing in GIP secretion in both normal and streptozotocin-induced diabetic mice. Glimepiride, a sulfonylurea, did not induce GIP secretion and pretreatment with diazoxide, a KATP channel activator, did not affect glucose-induced GIP secretion in the normal state. In mice lacking KATP channels (Kir6.2(-/-) mice), glucose-induced GIP secretion was enhanced compared with control (Kir6.2(+) (/) (+)) mice, but was completely blocked by the SGLT1 inhibitor phlorizin. In Kir6.2(-/-) mice, intestinal glucose absorption through SGLT1 was enhanced compared with that in Kir6.2(+) (/) (+) mice. On the other hand, glucose-induced GIP secretion was enhanced in the diabetic state in Kir6.2(+) (/) (+) mice. This GIP secretion was partially blocked by phlorizin, but was completely blocked by pretreatment with diazoxide in addition to phlorizin administration. These results demonstrate that glucose-induced GIP secretion depends primarily on SGLT1 in the normal state, whereas the KATP channel as well as SGLT1 is involved in GIP secretion in the diabetic state in vivo.

材料
货号
品牌
产品描述

Sigma-Aldrich
水, suitable for HPLC
Sigma-Aldrich
水, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
水, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
水, HPLC Plus
Sigma-Aldrich
链脲菌素, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
水, Deionized
Sigma-Aldrich
水, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
水, for molecular biology, sterile filtered
Supelco
水, suitable for ion chromatography
Sigma-Aldrich
水, BioPerformance Certified
Sigma-Aldrich
水, ACS reagent
Sigma-Aldrich
D-(+)-木糖, ≥99%
Supelco
水, ACS reagent, for ultratrace analysis
Supelco
水, for TOC analysis
Sigma-Aldrich
水, for cell biology, sterile ultrafiltered
Sigma-Aldrich
D-(+)-木糖, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
纯水密度标准物质RM, 0.9982 g/mL(20 °C), UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
D-(+)-木糖, ≥99% (GC)
Sigma-Aldrich
水, PCR Reagent
Sigma-Aldrich
低氘水, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
二氮嗪
Sigma-Aldrich
水-16O, ≥99.94 atom % 16O
Sigma-Aldrich
D-(+)-木糖, ≥99% (GC), BioXtra
Sigma-Aldrich
E-Toxate 水, endotoxin, free
Supelco
水, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
格列美脲, ≥98% (HPLC), solid
Sigma-Aldrich
水, tested according to Ph. Eur.
水, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
USP
格列美脲, United States Pharmacopeia (USP) Reference Standard
Supelco
密度标准品 998kg/m3, H&D Fitzgerald Ltd. Quality