跳转至内容
Merck
  • Inkjet printed solar cell active layers based on a novel, amorphous polymer.

Inkjet printed solar cell active layers based on a novel, amorphous polymer.

Journal of nanoscience and nanotechnology (2013-08-02)
Alexander Lange, Wolfram Schindler, Michael Wegener, Konstantinos Fostiropoulos, Silvia Janietz
摘要

Organic solar cells are a favorable alternative to their inorganic counterparts because the functional layers of these devices can be processed with printing or coating on a large scale. In this study, a novel polymer was synthesized, blended with fullerene and deposited with inkjet printing for solar cell applications. Devices with printed layers were compared to those with spin coated films in order to evaluate inkjet printing as a thin film deposition method. Efficiency values of 3.7% were found for devices with inkjet printed or spin coated layers. Inkjet printing can be used to successfully process the active layers of organic solar cells consisting of novel polymers without sacrificing device performance.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化锌, ReagentPlus®, powder, <5 μm particle size, 99.9%
Sigma-Aldrich
氧化锌, nanopowder, <100 nm particle size
Sigma-Aldrich
氧化锌, puriss. p.a., ACS reagent, ≥99.0% (KT)
Sigma-Aldrich
氧化锌, nanopowder, <50 nm particle size (BET), >97%
Sigma-Aldrich
氧化锌,分散体, nanoparticles, <100 nm particle size (TEM), ≤40 nm avg. part. size (APS), 20 wt. % in H2O
Sigma-Aldrich
氧化锌, 99.99% trace metals basis
Sigma-Aldrich
氧化锌, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5% (calc. for dried substance)
Sigma-Aldrich
氧化锌, 99.999% trace metals basis
Supelco
氧化锌, analytical standard