跳转至内容
Merck
  • Magnetic structure of La2O3FeMnSe2: neutron diffraction and physical property measurements.

Magnetic structure of La2O3FeMnSe2: neutron diffraction and physical property measurements.

Journal of physics. Condensed matter : an Institute of Physics journal (2013-02-02)
S Landsgesell, E Blumenröther, K Prokeš
摘要

We report on the characterization of the mixed layered lanthanum iron manganese oxyselenide La(2)O(3)FeMnSe(2), where Fe and Mn share the same crystallographic position. The susceptibility data show a magnetic transition temperature of 76 K and a strong difference between field cooled and zero field cooled (ZFC) data at low fields. While the ZFC magnetization curve exhibits negative values below about 45 K, hysteresis measurement reveals, after an initial negative magnetic moment, a hysteresis loop typical for ferromagnetic material, pointing to competing ferromagnetic and antiferromagnetic interactions. Resistivity and dielectric permittivity measurements indicate that La(2)O(3)FeMnSe(2) is a semiconductor. We performed x-ray diffraction at 295 K and neutron diffraction at 90 and 1.7 K. The nuclear and magnetic structure was refined in the space group I4/mmm with a = 4.11031 (3) Å and c = 18.7613 (2) Å at 295 K. We did not detect a structural distortion and the Fe and Mn atoms were randomly distributed. The magnetic order was found to be antiferromagnetic, with a propagation vector q = (0,0,0) and magnetic moments of 3.44 (5) μ(B) per Fe/Mn atom aligned within the a-b plane. This magnetic order is different with respect to the pure Fe or Mn compositions reported in other studies.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化镧(III), ≥99.9%
Sigma-Aldrich
氧化镧(III), 99.99% trace metals basis
Supelco
氧化镧(III), suitable for AAS, ≥99.9%
Sigma-Aldrich
镧, powder, −40 mesh, under oil, 99.9% trace rare earth metals basis
Sigma-Aldrich
镧, pieces
Sigma-Aldrich
氧化镧(III), nanopowder, <100 nm particle size (TEM), 99% trace metals basis
Sigma-Aldrich
氧化镧(III), 99.999% trace metals basis