- Two- and three-dimensional standing waves in a reaction-diffusion system.
Two- and three-dimensional standing waves in a reaction-diffusion system.
We observe standing waves of chemical concentration in thin layers [quasi-two-dimensional (2D)] and capillaries [three-dimensional (3D)] containing the aqueous Belousov-Zhabotinsky reaction in a reverse microemulsion stabilized by the ionic surfactant sodium bis-2-ethylhexyl sulfosuccinate (AOT) and with cyclo-octane as the continuous phase. The 3D structures are oscillatory lamellae or square-packed cylinders at high and low volume fractions, respectively, of aqueous droplets. These patterns correspond to oscillatory labyrinthine stripes and square-packed spots in the 2D configuration. Computer simulations, as well as observations in E. coli, give qualitative agreement with the observed patterns and suggest that, in contrast to Turing patterns, the structures are sensitive to the size and shape of the system.