跳转至内容
Merck
  • Cell proliferation effect of deep-penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis.

Cell proliferation effect of deep-penetrating microcavity tandem NIR OLEDs with therapeutic trend analysis.

Scientific reports (2022-06-30)
Yongjin Park, Hye-Ryung Choi, Yongmin Jeon, Hyuncheol Kim, Jung Won Shin, Chang-Hun Huh, Kyoung-Chan Park, Kyung-Cheol Choi
摘要

Long wavelengths that can deeply penetrate into human skin are required to maximize therapeutic effects. Hence, various studies on near-infrared organic light-emitting diodes (NIR OLEDs) have been conducted, and they have been applied in numerous fields. This paper presents a microcavity tandem NIR OLED with narrow full-width half-maximum (FWHM) (34 nm), high radiant emittance (> 5 mW/cm2) and external quantum efficiency (EQE) (19.17%). Only a few papers have reported on biomedical applications using the entire wavelength range of the visible and NIR regions. In particular, no biomedical application studies have been reported in the full wavelength region using OLEDs. Therefore, it is worth researching the therapeutic effects of using OLED, a next-generation light source, and analyzing trends for cell proliferation effects. Cell proliferation effects were observed in certain wavelength regions when B, G, R, and NIR OLEDs were used to irradiate human fibroblasts. The results of an in-vitro experiment indicated that the overall tendency of wavelengths is similar to that of the cytochrome c oxidase absorption spectrum of human fibroblasts. This is the first paper to report trends in the cell proliferation effects in all wavelength regions using OLEDs.

材料
货号
品牌
产品描述

Sigma-Aldrich
嗜热菌蛋白酶 from Geobacillus stearothermophilus, Type X, lyophilized powder, 30-350 units/mg protein (E1%/280)