跳转至内容
Merck
  • Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding.

Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding.

Nature communications (2021-10-23)
Stuart Sullivan, Thomas Waksman, Dimitra Paliogianni, Louise Henderson, Melanie Lütkemeyer, Noriyuki Suetsugu, John M Christie
摘要

Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.