跳转至内容
Merck
  • Extracellular Vesicles Containing MicroRNA-92a-3p Facilitate Partial Endothelial-Mesenchymal Transition and Angiogenesis in Endothelial Cells.

Extracellular Vesicles Containing MicroRNA-92a-3p Facilitate Partial Endothelial-Mesenchymal Transition and Angiogenesis in Endothelial Cells.

International journal of molecular sciences (2019-09-11)
Nami O Yamada, Kazuki Heishima, Yukihiro Akao, Takao Senda
摘要

Extracellular vesicles (EVs) are nanometer-sized membranous vesicles used for primitive cell-to-cell communication. We previously reported that colon cancer-derived EVs contain abundant miR-92a-3p and have a pro-angiogenic function. We previously identified Dickkopf-3 (Dkk-3) as a direct target of miR-92a-3p; however, the pro-angiogenic function of miR-92a-3p cannot only be attributed to downregulation of Dkk-3. Therefore, the complete molecular mechanism by which miR-92a-3p exerts pro-angiogenic effects is still unclear. Here, we comprehensively analyzed the gene sets affected by ectopic expression of miR-92a-3p in endothelial cells to elucidate processes underlying EV-induced angiogenesis. We found that the ectopic expression of miR-92a-3p upregulated cell cycle- and mitosis-related gene expression and downregulated adhesion-related gene expression in endothelial cells. We also identified a novel target gene of miR-92a-3p, claudin-11. Claudin-11 belongs to the claudin gene family, which encodes essential components expressed at tight junctions (TJs). Disruption of TJs with a concomitant loss of claudin expression is a significant event in the process of epithelial-to-mesenchymal transition. Our findings have unveiled a new EV-mediated mechanism for tumor angiogenesis through the induction of partial endothelial-to-mesenchymal transition in endothelial cells.

材料
货号
品牌
产品描述

Sigma-Aldrich
MISSION® esiRNA, targeting human CLDN11 (2)