跳转至内容
Merck
  • Upregulation of Fibroblast Growth Factors Caused by Heart and Neural Crest Derivatives Expressed 2 Suppression in Endometriotic Cells: A Possible Therapeutic Target in Endometriosis.

Upregulation of Fibroblast Growth Factors Caused by Heart and Neural Crest Derivatives Expressed 2 Suppression in Endometriotic Cells: A Possible Therapeutic Target in Endometriosis.

Reproductive sciences (Thousand Oaks, Calif.) (2018-10-03)
Nao Kato, Akira Iwase, Chiharu Ishida, Takashi Nagai, Masahiko Mori, Bayasula, Tomoko Nakamura, Satoko Osuka, Umida Ganiyeva, Ying Qin, Rika Miki, Fumitaka Kikkawa
摘要

Several features exist that distinguish endometriotic cells from eutopic endometrial cells. Progesterone resistance is one of the main distinguishing features, although how progesterone resistance affects the phenotype of endometriotic cells is not fully elucidated. Heart and neural crest derivatives expressed 2 (HAND2) is a transcriptional factor that plays an important role in maintaining endometrial function in a progesterone-dependent manner. Therefore, we explored whether progesterone-dependent HAND2 is implicated in the progression of endometriosis. HAND2 was less expressed by endometriotic tissues compared to endometrial tissues. Suppression of HAND2 expression induced fibroblast growth factor 1 (FGF1), FGF2, and FGF9 in endometriotic stromal cells and consequently enhanced migration and invasion capacity. AZD4547, a FGF receptor inhibitor, diminished the migration and invasion of endometriotic cells in vitro. In the murine model of endometriosis, AZD4547 showed suppressive effects on the development of endometriotic lesions at a relatively low concentration. In conclusion, we demonstrated that FGF1, FGF2, and FGF9 are downstream effectors of HAND2 in endometriotic cells. Since HAND2-dependent FGFs play roles in enhancing invasive capacity of endometriotic cells, our results suggest that FGF receptor inhibitors, such as AZD4547, can be promising therapeutic targets for endometriosis.