跳转至内容
Merck
  • Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.

Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.

Phytomedicine : international journal of phytotherapy and phytopharmacology (2019-01-23)
Liga Saulite, Kaspars Jekabsons, Maris Klavins, Ruta Muceniece, Una Riekstina
摘要

Anthocyanidins are plant phytochemicals found at high concentrations in berries, vegetables and flowers. Anthocyanidins have been extensively investigated due to their antioxidative, antidiabetic and anti-inflammatory effects. Few studies show that anthocyanidins decrease obesity and improve bone density. However, the effects of anthocyanidins on tissue regeneration have not been sufficiently clarified. Human mesenchymal stem cells (MSCs) are multipotent adult stem cells responsible for the regeneration of fat, bone and cartilage. Although MSCs are often used for screening of biologically active compounds, so far, the effect of anthocyanidins on MSC differentiation has not been addressed. The aim of this study was to analyse the effect of anthocyanidins malvidin, cyanidin and delphinidin on adipose tissue-derived MSC differentiation into adipocytes, osteocytes and chondrocytes. Differentiation into adipocytes, osteocytes and chondrocytes was carried out in the defined cell culture conditions in the presence or absence of malvidin, cyanidin and delphinidin. The differentiation was confirmed by cytochemical staining and tissue-specific gene and protein expression. Antiobesity and anti-diabetes drug liraglutide was used as a reference drug in this study. Delphinidin inhibited MSC adipogenesis and downregulated FABP4 and adiponectin genes. Malvidin induced a significantly higher accumulation of calcium deposits in MSCs comparing to untreated MSCs, as well as upregulated the osteocyte-specific gene BMP-2 and Runx-2 expression and induced BMP-2 secretion. Cyanidin and delphinidin demonstrated a chondrogenesis stimulating effect by upregulation of Col2a1 and aggrecan. Altogether, our data show that anthocyanidins malvidin, cyanidin and delphinidin exert favourable effects on MSC osteogenesis and chondrogenesis whereas delphinidin inhibits adipogenesis. These results suggest that anthocyanidin effects on tissue regeneration could be further analysed in depth in vivo.