跳转至内容
Merck
  • Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans.

Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans.

Journal of biochemistry (2018-02-15)
Md Ziaur Rahman, Yuta Tsujimori, Megumi Maeda, Md Anowar Hossain, Takeshi Ishimizu, Yoshinobu Kimura
摘要

In a previous study, we molecular-characterized a tomato (Solanum lycopersicum) α1, 3/4-fucosidase (α-Fuc'ase Sl-1) encoded in a tomato gene (Solyc03g006980), indicating that α-Fuc'ase Sl-1 is involved in the turnover of Lea epitope-containing N-glycans. In this study, we have characterized another tomato gene (Solyc11g069010) encoding α1, 3/4-fucosidase (α-Fuc'ase Sl-2), which is also active toward the complex type N-glycans containing Lea epitope(s). The baculovirus-insect cell expression system was used to express that α-Fuc'ase Sl-2 with anti-FLAG tag, and the expression product (rFuc'ase Sl-2), was found as a 65 kDa protein using SDS-PAGE and has an optimum pH of around 5.0. Similarly to rFuc'ase Sl-1, rFuc'ase Sl-2 hydrolyzed the non-reducing terminal α1, 3-fucose residue on LNFP III and α1, 4-fucose residues of Lea epitopes on plant complex type N-glycans, but not the core α1, 3-fucose residue on Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc or Fucα1-3GlcNAc. However, we found that both α-Fuc'ases Sl-1 and Sl-2 were specifically active toward α1, 3-fucose residue on GlcNAcβ1-4(Fucα1-3)GlcNAc, indicating that the non-substituted β-GlcNAc linked to the proximal GlcNAc residue of the core tri-saccharide moiety of plant specific N-glycans must be a pre-requisite for α-Fuc'ase activity. A 3 D modelled structure of the catalytic sites of α-Fuc'ase Sl-2 suggested that Asp192 and Glu236 may be important for binding to the α1, 3/4 fucose residue.