Skip to Content
Merck
  • Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

Bio-medical materials and engineering (2015-09-26)
Atsushi Kameyama, Kim Bonroy, Caroline Elsen, Anne-Katrin Lührs, Yuji Suyama, Marleen Peumans, Bart Van Meerbeek, Jan De Munck
ABSTRACT

The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
N,O-Bis(trimethylsilyl)acetamide, synthesis grade, ≥95%
Sigma-Aldrich
Methane-12C, 13C-depleted, 99.9 atom % 12C
Carbon - Vitreous, foam, 150x150mm, 0.05g.cmué, porosity 96.5%, 24 pores/cm
Carbon - Vitreous, foil, 10x10mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, rod, 5mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 20mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 25x25mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 50mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, tube, 50mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, tube, 100mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 2.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 10mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 6.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 200mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 3.2mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 200mm, diameter 5.0mm, glassy carbon