Skip to Content
Merck
  • CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity.

CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity.

Journal of immunology (Baltimore, Md. : 1950) (2014-05-09)
Stefanie Ameres, Katrin Besold, Bodo Plachter, Andreas Moosmann
ABSTRACT

Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O