Skip to Content
Merck
  • Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs.

Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs.

Nature communications (2015-03-07)
Hartmut Jahns, Martina Roos, Jochen Imig, Fabienne Baumann, Yuluan Wang, Ryan Gilmour, Jonathan Hall
ABSTRACT

An established means of improving the pharmacokinetics properties of oligoribonucleotides (ORNs) is to exchange their phosphodiester linkages for phosphorothioates (PSs). However, this strategy has not been pursued for small interfering RNAs (siRNAs), possibly because of sporadic reports that PS siRNAs show reduced inhibitory activity. The PS group is chiral at phosphorous (Rp/Sp centres), and conventional solid-phase synthesis of PS ORNs produces a population of diastereoisomers. Here we show that the choice of the activating agent for the synthesis of a PS ORN influences the Rp/Sp ratio of PS linkages throughout the strand. Furthermore, PS siRNAs composed of ORNs with a higher fraction of Rp centres show greater resistance to nucleases in serum and are more effective inhibitors in cells than their Sp counterparts. The finding that a stereochemically biased population of ORN diastereoisomers can be synthesized and exploited pharmacologically is important because uniform PS modification of siRNAs may provide a useful compromise of their pharmacokinetics and pharmacodynamics properties in RNAi therapeutics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
RIPA Buffer
Sigma-Aldrich
Triton X-100, laboratory grade