- Central apelin-13 inhibits food intake via the CRF receptor in mice.
Central apelin-13 inhibits food intake via the CRF receptor in mice.
Apelin, the novel identified peptide, is the endogenous ligand for the APJ. Previous studies have reported the effect of apelin on food intake, however the action of acute central injected apelin on food intake in mice remains unknown. The present study was designed to investigate the mechanism as well as the effect of central apelin-13 on food intake in mice. During the dark period, the cumulative food intake was significantly decreased at 4h after the intracerebroventricular (i.c.v.) injection of 1 and 3μg/mouse apelin-13 and the period food intake was significantly reduced during 2-4h after treatment. In the fasted mice, the cumulative food intake was significantly decreased at 2 and 4h after injection of 3μg/mouse apelin-13. The cumulative water intake was significantly reduced by apelin-13 (3μg/mouse) at 4h after injection in freely feeding and fasted mice. However, during light period, apelin-13 had no influence on food and water intake in freely feeding mice. The APJ receptor antagonist apelin-13(F13A) (6μg/mouse) and the corticotrophin-releasing factor (CRF) receptor antagonist α-helical CRF(9-41) (3μg/mouse) could reverse the inhibitory effect on cumulative food intake/0-4h induced by apelin-13 (3μg/mouse) in freely feeding mice during the dark period, whereas the anorexic effect could not be antagonized by the arginie vasopressin (AVP) receptor antagonist deamino(CH(2))(5)Tyr(Me)AVP (0.5μg/mouse). Taken together, these results suggest that central apelin-13 inhibits food intake in mice and it seems that APJ receptor and CRF receptor, but not AVP receptor, might be involved in this process.