Skip to Content
Merck
  • Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair.

Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair.

Biochemistry (2011-01-18)
Nayef Mazloum, Melanie A Stegman, Deborah L Croteau, Bennett Van Houten, Nyoun Soo Kwon, Yan Ling, Caitlyn Dickinson, Aditya Venugopal, Mohammad Atif Towheed, Carl Nathan
ABSTRACT

Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ECO TWEEN® 80, viscous liquid
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
TWEEN® 80, BioXtra, viscous liquid
Sigma-Aldrich
TWEEN® 80, from non-animal source
Sigma-Aldrich
TWEEN® 80, for molecular biology, syrup
Sigma-Aldrich
TWEEN® 80, viscous liquid, Low-peroxide
Sigma-Aldrich
TWEEN® 80, viscous liquid, Preservative Free, Low-peroxide; Low-carbonyls
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
TWEEN® 80, viscous liquid
Sigma-Aldrich
TWEEN® 80, suitable for cell culture, suitable for insect cell culture, viscous liquid
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)