Skip to Content
Merck
  • SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient Spike S-acyltransferase.

SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient Spike S-acyltransferase.

Nature communications (2023-11-12)
Francisco S Mesquita, Laurence Abrami, Lucie Bracq, Nattawadee Panyain, Vincent Mercier, Béatrice Kunz, Audrey Chuat, Joana Carlevaro-Fita, Didier Trono, F Gisou van der Goot
ABSTRACT

SARS-CoV-2 infection requires Spike protein-mediated fusion between the viral and cellular membranes. The fusogenic activity of Spike depends on its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to mere Spike transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zdhhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with approx. 40 times higher Spike acylating activity, resulting in enhanced fusion of viruses with host cells. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis and pore-forming toxins, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to optimize it fusion glycoprotein.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-ZDHHC20 antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Anti-c-Myc antibody, Mouse monoclonal, clone 9E10, purified from hybridoma cell culture