Skip to Content
Merck
  • Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

Journal of enzyme inhibition and medicinal chemistry (2018-02-07)
Jie Zhu, Hongyu Yang, Yao Chen, Hongzhi Lin, Qi Li, Jun Mo, Yaoyao Bian, Yuqiong Pei, Haopeng Sun
ABSTRACT

The cholinergic hypothesis has long been a "polar star" in drug discovery for Alzheimer's disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC50) = 37.02 nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC50 = 101.40 nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25 μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.

MATERIALS
Product Number
Brand
Product Description

Supelco
1,1,1,3,3,3-Hexafluoro-2-propanol, for GC derivatization, LiChropur, ≥99.8%