- Alanine dehydrogenase from soybean nodule bacteroids. Kinetic mechanism and pH studies.
Alanine dehydrogenase from soybean nodule bacteroids. Kinetic mechanism and pH studies.
The kinetic mechanism of alanine dehydrogenase from soybean nodule bacteroids was studied by initial velocity experiments with or without product inhibitors, dead-end inhibitors, or alternate substrates. Without inhibitors, double-reciprocal plots of initial velocity experiments showed intersecting lines, indicating a sequential mechanism. These initial velocity experiments also revealed rapid-equilibrium ordered binding of NH4+ prior to pyruvate. When NAD was varied at changing-fixed concentrations of L-alanine, a nonlinear, concave down double-reciprocal plot was obtained. Substrate inhibition by pyruvate or L-alanine with cosubstrates varied was uncompetitive giving further support to an ordered mechanism. Product inhibition studies showed that both NAD and NADH and pyruvate and L-alanine were competitive. This suggested a Theorell-Chance mechanism. When product inhibition by L-alanine was studied with NH4+ varied in a series of experiments at increasing concentrations of pyruvate, the inhibition was eliminated, as expected for a Theorell-Chance mechanism. Furthermore, when NADH, NH4+, and pyruvate were varied simultaneously, maintaining their concentrations at a constant ratio to each other, an infinite Vmax was obtained. pH studies of the kinetic parameters indicated that NH4+, rather than NH3, was the true substrate that binds to a residue on the enzyme with a pK of 8.1. In conclusion, the kinetic mechanism at pH 8.5 was determined to be a Ter-Bi Theorell-Chance. In the amination direction, the substrates add in the order: NADH, NH4+, pyruvate, with NH4+ binding in rapid-equilibrium. In the reverse direction, NAD adds first, followed by L-alanine.