Skip to Content
Merck
  • Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization.

Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization.

Nature neuroscience (2010-12-07)
Susan M Ferguson, Daniel Eskenazi, Masago Ishikawa, Matthew J Wanat, Paul E M Phillips, Yan Dong, Bryan L Roth, John F Neumaier
ABSTRACT

Dorsal striatum is important for the development of drug addiction; however, a precise understanding of the roles of striatopallidal (indirect) and striatonigral (direct) pathway neurons in regulating behaviors remains elusive. Using viral-mediated expression of an engineered G protein-coupled receptor (hM(4)D), we found that activation of hM(4)D receptors with clozapine-N-oxide (CNO) potently reduced striatal neuron excitability. When hM(4)D receptors were selectively expressed in either direct or indirect pathway neurons, CNO did not change acute locomotor responses to amphetamine, but did alter behavioral plasticity associated with repeated drug treatment. Specifically, transiently disrupting striatopallidal neuronal activity facilitated behavioral sensitization, whereas decreasing excitability of striatonigral neurons impaired its persistence. These findings suggest that acute drug effects can be parsed from the behavioral adaptations associated with repeated drug exposure and highlight the utility of this approach for deconstructing neuronal pathway contributions to behavior.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Clozapine N-oxide hydrochloride, ≥98% (HPLC), Water soluble Clozapine N-oxide