Skip to Content
Merck
  • Pharmacokinetic-pharmacodynamic analysis of spiroindolone analogs and KAE609 in a murine malaria model.

Pharmacokinetic-pharmacodynamic analysis of spiroindolone analogs and KAE609 in a murine malaria model.

Antimicrobial agents and chemotherapy (2014-12-10)
Suresh B Lakshminarayana, Céline Freymond, Christoph Fischli, Jing Yu, Sebastian Weber, Anne Goh, Bryan K S Yeung, Paul C Ho, Véronique Dartois, Thierry T Diagana, Matthias Rottmann, Francesca Blasco
ABSTRACT

Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between dose and efficacy (i.e., reduction in parasitemia) was examined. All spiroindolone analogs studied displayed a maximum reduction in parasitemia, with 90% effective dose (ED90) values ranging between 6 and 38 mg/kg of body weight. Further, dose fractionation studies were conducted for KAE609, and the relationship between PK-PD indices and efficacy was analyzed. The PK-PD indices were calculated using the in vitro potency against P. berghei (2× the 99% inhibitory concentration [IC99]) as a threshold (TRE). The percentage of the time in which KAE609 plasma concentrations remained at >2× the IC99 within 48 h (%T>TRE) and the area under the concentration-time curve from 0 to 48 h (AUC0-48)/TRE ratio correlated well with parasite reduction (R2=0.97 and 0.95, respectively) but less so for the maximum concentration of drug in serum (Cmax)/TRE ratio (R2=0.88). The present results suggest that for KAE609 and, supposedly, for its analogs, the dosing regimens covering a T>TRE of 100%, AUC0-48/TRE ratio of 587, and a Cmax/TRE ratio of 30 are likely to result in the maximum reduction in parasitemia in the P. berghei malaria mouse model. This information could be used to prioritize analogs within the same class of compounds and contribute to the design of efficacy studies, thereby facilitating early drug discovery and lead optimization programs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Citric acid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Supelco
Citric acid, Anhydrous, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Lysine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Millipore
Bifido Selective Supplement B, suitable for microbiology
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
α-Tocopherol, ≥95.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
(+)-α-Tocopherol, from vegetable oil, Type V, ~1000 IU/g
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Citric acid, 99%
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
(+)-α-Tocopherol, Type VI, from vegetable oil, liquid (≥0.88M based on potency, density and molecular wt.), BioReagent, suitable for insect cell culture, ≥1000 IU/g
Citric acid, anhydrous, European Pharmacopoeia (EP) Reference Standard