Skip to Content
Merck
  • Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

Environmental science & technology (2011-08-23)
Guodong Sheng, Shitong Yang, Jiang Sheng, Jun Hu, Xiaoli Tan, Xiangke Wang
ABSTRACT

Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

MATERIALS
Product Number
Brand
Product Description

Supelco
Celite® 545 AW, reagent grade
Supelco
Celatom®, acid-washed, for use in Total Dietary Fiber Assay, TDF-100A
Sigma-Aldrich
Hyflo® Super Cel®, filter aid, flux calcined, treated with sodium carbonate
Sigma-Aldrich
Celite® 503, filter aid, treated with sodium carbonate, calcined
Sigma-Aldrich
Filter agent, Celite® 545
Sigma-Aldrich
Celpure® P1000, meets USP/NF testing specifications
Sigma-Aldrich
Celite® 545, filter aid, treated with sodium carbonate, flux calcined
Sigma-Aldrich
Celite® 545 AW, filter aid, acid washed, treated with sodium carbonate, flux calcined
Sigma-Aldrich
Diatomaceous earth