Skip to Content
Merck
  • Influence of lipid membrane rigidity on properties of supporting polymer.

Influence of lipid membrane rigidity on properties of supporting polymer.

Biophysical journal (2011-07-05)
Michael S Jablin, Manish Dubey, Mikhail Zhernenkov, Ryan Toomey, Jarosław Majewski
ABSTRACT

Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,2-Dipalmitoyl-rac-glycero-3-phosphoethanolamine, synthetic, ≥98%
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine, ≥97%