Skip to Content
Merck
  • Autologous treatment for ALS with implication for broad neuroprotection.

Autologous treatment for ALS with implication for broad neuroprotection.

Translational neurodegeneration (2022-03-12)
Daehwan Kim, Subin Kim, Ashley Sung, Neetika Patel, Nathan Wong, Michael J Conboy, Irina M Conboy
ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor neurons (MNs), leading to paralysis, respiratory failure and death within 2-5 years of diagnosis. The exact mechanisms of sporadic ALS, which comprises 90% of all cases, remain unknown. In familial ALS, mutations in superoxide dismutase (SOD1) cause 10% of cases. ALS patient-derived human-induced pluripotent stem cells (ALS hiPSCs, harboring the SOD1AV4 mutation), were differentiated to MNs (ALS-MNs). The neuroprotective effects of conditioned medium (CM) of hESCs (H9), wt hiPSCs (WTC-11) and the ALS iPSCs, on MN apoptosis and viability, formation and maintenance of neurites, mitochondrial activity and expression of inflammatory genes, were examined. For in vivo studies, 200 μl of CM from the ALS iPSCs (CS07 and CS053) was injected subcutaneously into the ALS model mice (transgenic for the human SOD1G93A mutation). Animal agility and strength, muscle innervation and mass, neurological score, onset of paralysis and lifespan of the ALS mice were assayed. After observing significant disease-modifying effects, the CM was characterized biochemically by fractionation, comparative proteomics, and epigenetic screens for the dependence on pluripotency. CM of fibroblasts that were differentiated from the wt hiPSCs lacked any neuroprotective activity and was used as a negative control throughout the studies. The secretome of PSCs including the ALS patient iPSCs was neuroprotective in the H2O2 model. In the model with pathogenic SOD1 mutation, ALS iPSC-CM attenuated all examined hallmarks of ALS pathology, rescued human ALS-MNs from denervation and death, restored mitochondrial health, and reduced the expression of inflammatory genes. The ALS iPSC-CM also improved neuro-muscular health and function, and delayed paralysis and morbidity in ALS mice. Compared side by side, cyclosporine (CsA), a mitochondrial membrane blocker that prevents the leakage of mitochondrial DNA, failed to avert the death of ALS-MNs, although CsA and ALS iPSC-CM equally stabilized MN mitochondria and attenuated inflammatory genes. Biochemical characterization, comparative proteomics, and epigenetic screen all suggested that it was the interactome of several key proteins from different fractions of PSC-CM that delivered the multifaceted neuroprotection. This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Synaptophysin Antibody, clone SY38, Alexa Fluor 488 Conjugate, clone SY38, from mouse, ALEXA FLUOR 488
Sigma-Aldrich
Anti-MNX1 (HB9) Antibody, from rabbit, purified by affinity chromatography