Skip to Content
Merck

Cultivate Reality

3D Cell Culture Tools and Applications

3D Cell Culture Workflow Tools

Fluorescence image of human colon organoids stained for mucin-1, F-actin, and DAPI

Figure 1. Characterization of human colon organoids using immunocytochemical stains for Mucin-1, F-actin, and DAPI.

What is 3D Cell Culture?

Cells in their natural environment have constant interactions with their extracellular matrix (ECM) and other cells, regulated by complex biological functions. Three-dimensional (3D) cell culture systems allow cells to grow and interact with their surroundings in all three dimensions.

By utilizing 3D cell culture models, researchers can simulate the in vivo physiological microenvironment. These models also provide better predictive in vitro cell models for applications including cancer research, drug discovery, and regenerative medicine. Transitioning to 3D cell culture can bring together the biological relevance of animal models with the accessibility of traditional 2D models.

3D Culture Models 

We offer an extensive portfolio of tools, protocols, and technologies to support 3D cell culture applications such as drug permeability, ADME/toxicity assays, cancer, and autoimmune disorders. 

Explore our Knowledge Center below and discover answers to questions about organoids, hydrogels, and organotypic cultures. Request more information here.


Scientist’s hand holding tweezers picking up a clear insert for a cell culture plate filled with culture media in the tissue culture hood. ERS 3.0 instrument is directly to the right and displays the culture plate map. ERS 3.0 probe is laying directly in front of the instrument.

When researchers are looking for more biologically relevant methods than 2D cell culture, they often turn to 2.5D culture methods. In 2.5D cell culture, researchers grow cells on coated surfaces such as a biological coating or synthetic polymer, enhancing cell growth, attachment, and differentiation. Researchers can move from 2D to 2.5D culture applications with our collection of tools, including Millicell® inserts and the Millicell® ERS 3.0 Digital Voltohmmeter.

 Millicell® ERS 3.0 Digital Voltohmmeter

The Millicell® ERS 3.0 Digital Voltohmmeter acquires highly stable TEER measurements, automatically saves your data, and includes an easy-to-use touchscreen interface, a standing in-well probe, a plug-in or battery pack power source, and an adjustable electrode that is compatible with a wide variety of cell culture inserts, including Millicell® cell culture inserts.

TEER data from the Millicell® ERS 3.0 Digital Voltohmmeter can easily be exported via USB drive, ethernet, or uploaded to the cloud. Our Millicell® Cloud features comprehensive measurement view, enabling visualization and analysis your data in various formats.

Millicell® Cell Culture Inserts 

TEER readers are often used to monitor and measure epithelial monolayer barrier formation in 2.5D experiments. Researchers perform barrier formation assays on hanging inserts with porous membranes, with cells forming confluent monolayers when there is an increase in resistance measurements. Millicell® cell culture inserts allow researchers to study the apical and basal surfaces of the monolayer and are ideal for co-culture applications. 


Materials
Loading

Moving from 2D to 3D

3D cell culture is an in vitro method for researchers who want to more closely model physiological conditions. It is often more relevant than using traditional 2D methods. 3D cell culture methods promote interactions with other cells and with the physical environment. These interactions can regulate multiple cellular functions, including transcription regulation and apoptosis.

Scaffold-free technologies

One method of 3D cell culture is the scaffold-free model. Scaffold-free 3D cell culture techniques allow cells to self-assemble and form non-adherent cell aggregates, clusters, spheroids, or tumorspheres.

Scaffold-based technologies

In scaffold-based 3D cell culture methods, 3D scaffolds provide structural support for cell attachment and tissue development. This recapitulates elements of the native extracellular matrix (ECM) or cellular environment.

For researchers studying drug safety and efficacy, ADME/toxicity, and biotherapeutics development, 3D cell culture models can reduce the time spent in setting up and performing assays. 

Related Content

Page 1 of 2

Request More Information 

Fill out our form to request specific information about our tools and cell lines for 3D cell culture.



Related Product Resources

Page 1 of 2

Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?