Skip to Content
Merck
  • Symmetrically dispersed spectroscopic single-molecule localization microscopy.

Symmetrically dispersed spectroscopic single-molecule localization microscopy.

Light, science & applications (2020-06-09)
Ki-Hee Song, Yang Zhang, Benjamin Brenner, Cheng Sun, Hao F Zhang
ABSTRACT

Spectroscopic single-molecule localization microscopy (sSMLM) was used to achieve simultaneous imaging and spectral analysis of single molecules for the first time. Current sSMLM fundamentally suffers from a reduced photon budget because the photons from individual stochastic emissions are divided into spatial and spectral channels. Therefore, both spatial localization and spectral analysis only use a portion of the total photons, leading to reduced precisions in both channels. To improve the spatial and spectral precisions, we present symmetrically dispersed sSMLM, or SDsSMLM, to fully utilize all photons from individual stochastic emissions in both spatial and spectral channels. SDsSMLM achieved 10-nm spatial and 0.8-nm spectral precisions at a total photon budget of 1000. Compared with the existing sSMLM using a 1:3 splitting ratio between spatial and spectral channels, SDsSMLM improved the spatial and spectral precisions by 42% and 10%, respectively, under the same photon budget. We also demonstrated multicolour imaging of fixed cells and three-dimensional single-particle tracking using SDsSMLM. SDsSMLM enables more precise spectroscopic single-molecule analysis in broader cell biology and material science applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glucose Oxidase from Aspergillus niger, Type VII, lyophilized powder, ≥100,000 units/g solid (without added oxygen)
Sigma-Aldrich
Poly-L-lysine solution, 0.1 % (w/v) in H2O
Sigma-Aldrich
1,2-Dilinoleoyl-3-palmitoyl-rac-glycerol, ≥95% (TLC), liquid
Sigma-Aldrich
CdTe core-type quantum dots, COOH functionalized, fluorescence λem 610 nm, powder
Sigma-Aldrich
LDN-57444, ≥98% (HPLC)