Skip to Content
Merck
  • Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure.

Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure.

Journal of internal medicine (2006-06-23)
H Nørrelund, H Wiggers, M Halbirk, J Frystyk, A Flyvbjerg, H E Bøtker, O Schmitz, J O L Jørgensen, J S Christiansen, N Møller
ABSTRACT

It is well known that chronic heart failure (CHF) is associated with insulin resistance and cachexia, but little is known about the underlying substrate metabolism. The present study was undertaken to identify disturbances of basal glucose, lipid and protein metabolism. We studied eight nondiabetic patients with CHF (ejection fraction 30 +/- 4%) and eight healthy controls. Protein metabolism (whole body and regional muscle fluxes) and total glucose turnover were isotopically assayed. Substrate oxidation were obtained by indirect calorimetry. The metabolic response to exercise was studied by bicycle ergometry exercise. Our data confirm that CHF patients have a decreased lean body mass. CHF patients are characterised by (i) decreased glucose oxidation [glucose oxidation (mg kg(-1) min(-1)): 1.25 +/- 0.09 (patients) vs. 1.55 +/- 0.09 (controls), P < 0.01] and muscle glucose uptake [a - v diff(glucose) (micromol L(-1)): -10 +/- 25 (patients) vs. 70 +/- 22 (controls), P < 0.01], (ii) elevated levels of free fatty acids (FFA) [FFA (mmol L(-1)): 0.72 +/- 0.05 (patients) vs. 0.48 +/- 0.03 (controls), P < 0.01] and 3-hydroxybutyrate and signs of elevated fat oxidation and muscle fat utilization [a - v diff(FFA) (mmol L(-1)): 0.12 +/- 0.02 (patients) vs. 0.05 +/- 0.01 (controls), P < 0.05] and (iii) elevated protein turnover and protein breakdown [phenylalanine flux (micromol kg(-1) h(-1)): 36.4 +/- 1.5 (patients) vs. 29.6 +/- 1.3 (controls), P < 0.01]. Patients had high circulating levels of noradrenaline, glucagon, and adiponectin, and low levels of ghrelin. We failed to observe any differences in metabolic responses between controls and patients during short-term exercise. In the basal fasting state patients with CHF are characterized by several metabolic abnormalities which may contribute to CHF pathophysiology and may provide a basis for targeted intervention.

MATERIALS
Product Number
Brand
Product Description

Supelco
L-Alanine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Alanine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Leucine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Threonine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Tyrosine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Alanine, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Tyrosine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Leucine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Tyrosine, FG
Sigma-Aldrich
L-Alanine, ≥99%
Sigma-Aldrich
L-Lysine, crystallized, ≥98.0% (NT)
Sigma-Aldrich
L-Tyrosine, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
L-Threonine, BioXtra, ≥99.5% (NT)
Sigma-Aldrich
L-Alanine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Leucine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Leucine, 99%, FG
Sigma-Aldrich
L-Alanine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Leucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Alanine, ≥98% (TLC)
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-Lysine, ≥98% (TLC)
Sigma-Aldrich
L-Tyrosine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Leucine, reagent grade, ≥98% (HPLC)
Supelco
L-Threonine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Tyrosine, reagent grade, ≥98% (HPLC)
SAFC
L-Threonine
SAFC
L-Tyrosine
Sigma-Aldrich
L-Alanine-12C3, 99.9 atom % 12C
Sigma-Aldrich
L-Glutamic acid, BioUltra, ≥99.5% (NT)