Skip to Content
Merck
  • Substrate-bound insulin-like growth factor (IGF)-I-IGF binding protein-vitronectin-stimulated breast cell migration is enhanced by coactivation of the phosphatidylinositide 3-Kinase/AKT pathway by alphav-integrins and the IGF-I receptor.

Substrate-bound insulin-like growth factor (IGF)-I-IGF binding protein-vitronectin-stimulated breast cell migration is enhanced by coactivation of the phosphatidylinositide 3-Kinase/AKT pathway by alphav-integrins and the IGF-I receptor.

Endocrinology (2007-12-15)
Brett G Hollier, Jennifer A Kricker, Derek R Van Lonkhuyzen, David I Leavesley, Zee Upton
ABSTRACT

IGF-I can bind to the extracellular matrix protein vitronectin (VN) through the involvement of IGF-binding proteins-2, -3, -4, and -5. Because IGF-I and VN have established roles in tumor cell dissemination, we were keen to investigate the functional consequences of the interaction of IGF-I, IGF binding proteins (IGFBPs), and VN in tumor cell biology. Hence, functional responses of MCF-7 breast carcinoma cells and normal nontumorgenic MCF-10A mammary epithelial cells were investigated to allow side-by-side comparisons of these complexes in both cancerous and normal breast cells. We demonstrate that substrate-bound IGF-I-IGFBP-VN complexes stimulate synergistic increases in cellular migration in both cell types. Studies using IGF-I analogs determined this stimulation to be dependent on both heterotrimeric IGF-I-IGFBP-VN complex formation and the involvement of the IGF-I receptor (IGF-IR). Furthermore, the enhanced cellular migration was abolished on incubation of MCF-7 and MCF-10A cells with function blocking antibodies directed at VN-binding integrins and the IGF-IR. Analysis of the signal transduction pathways underlying the enhanced cell migration revealed that the complexes stimulate a transient activation of the ERK/MAPK signaling pathway while simultaneously producing a sustained activation of the phosphatidylinositide 3-kinase/AKT pathway. Experiments using pharmacological inhibitors of these pathways determined a requirement for phosphatidylinositide 3-kinase/AKT activation in the observed response. Overexpression of wild type and activated AKT further increases substrate-bound IGF-I-IGFBP-VN-stimulated migration. This study provides the first mechanistic insights into the action of IGF-I-IGFBP-VN complexes and adds further evidence to support the involvement of VN-binding integrins and their cooperativity with the IGF-IR in the promotion of tumor cell migration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Integrin β1 Antibody, clone P4C10, culture supernatant, clone P4C10, Chemicon®
Sigma-Aldrich
Anti-Integrin αVβ5 Antibody, clone P1F6, clone P1F6, Chemicon®, from mouse
Sigma-Aldrich
Anti-Integrin αVβ6 Antibody, clone 10D5, azide free, clone 10D5, Chemicon®, from mouse
Sigma-Aldrich
Anti-Integrin αV Antibody, extracellular, clone AV1, azide free, culture supernatant, clone AV1, Chemicon®