Skip to Content
Merck
  • TFEB regulates lysosomal exocytosis of tau and its loss of function exacerbates tau pathology and spreading.

TFEB regulates lysosomal exocytosis of tau and its loss of function exacerbates tau pathology and spreading.

Molecular psychiatry (2020-05-06)
Yin Xu, Shuqi Du, Jacob A Marsh, Kanta Horie, Chihiro Sato, Andrea Ballabio, Celeste M Karch, David M Holtzman, Hui Zheng
ABSTRACT

Neurofibrillary tangles (NFTs) composed of hyperphosphorylated and misfolded tau protein are a pathological hallmark of Alzheimer's disease and other tauopathy conditions. Tau is predominantly an intraneuronal protein but is also secreted in physiological and pathological conditions. The extracellular tau has been implicated in the seeding and propagation of tau pathology and is the prime target of the current tau immunotherapy. However, truncated tau species lacking the microtubule-binding repeat (MTBR) domains essential for seeding have been shown to undergo active secretion and the mechanisms and functional consequences of the various extracellular tau are poorly understood. We report here that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, plays an essential role in the lysosomal exocytosis of selected tau species. TFEB loss of function significantly reduced the levels of interstitial fluid (ISF) tau in PS19 mice expressing P301S mutant tau and in conditioned media of mutant tau expressing primary neurons, while the secretion of endogenous wild-type tau was not affected. Mechanistically we found that TFEB regulates the secretion of truncated mutant tau lacking MTBR and this process is dependent on the lysosomal calcium channel TRPML1. Consistent with the seeding-incompetent nature of the truncated tau and supporting the concept that TFEB-mediated lysosomal exocytosis promotes cellular clearance, we show that reduced ISF tau in the absence of TFEB is associated with enhanced intraneuronal pathology and accelerated spreading. Our results support the idea that TFEB-mediated tau exocytosis serves as a clearance mechanism to reduce intracellular tau under pathological conditions and that effective tau immunotherapy should devoid targeting these extracellular tau species.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-γ-Tubulin antibody, Mouse monoclonal, clone GTU-88, ascites fluid
Sigma-Aldrich
GW405833 hydrochloride, ≥98% (HPLC), solid
Sigma-Aldrich
Anti-MCOLN1 antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Roche
cOmplete Protease Inhibitor Cocktail, Tablets provided in EASYpacks
Sigma-Aldrich
Tau Protein Ladder, 6 isoforms human, recombinant, expressed in E. coli, ≥90% (SDS-PAGE), buffered aqueous glycerol solution
Sigma-Aldrich
Goat Anti-Rabbit IgG Antibody, (H+L) HRP conjugate, 1 mg/mL, Chemicon®