Skip to Content
Merck
  • Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species.

Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species.

Journal of bacteriology (2015-02-19)
He Fu, William W Metcalf
ABSTRACT

Methanosarcina acetivorans uses a variety of methylated sulfur compounds as carbon and energy sources. Previous studies implicated the mtsD, mtsF, and mtsH genes in catabolism of dimethylsulfide, but the genes required for use of other methylsulfides have yet to be established. Here, we show that a four-gene locus, designated mtpCAP-msrH, is specifically required for growth on methylmercaptopropionate (MMPA). The mtpC, mtpA, and mtpP genes encode a putative corrinoid protein, a coenzyme M (CoM) methyltransferase, and a major facilitator superfamily (MFS) transporter, respectively, while msrH encodes a putative transcriptional regulator. Mutants lacking mtpC or mtpA display a severe growth defect in MMPA medium but are unimpaired during growth on other substrates. The mtpCAP genes comprise a transcriptional unit that is highly and specifically upregulated during growth on MMPA, whereas msrH is monocistronic and constitutively expressed. Mutants lacking msrH fail to transcribe mtpCAP and grow poorly in MMPA medium, consistent with the assignment of its product as a transcriptional activator. The mtpCAP-msrH locus is conserved in numerous marine methanogens, including eight Methanosarcina species that we showed are capable of growth on MMPA. Mutants lacking the mtsD, mtsF, and mtsH genes display a 30% reduction in growth yield when grown on MMPA, suggesting that these genes play an auxiliary role in MMPA catabolism. A quadruple ΔmtpCAP ΔmtsD ΔmtsF ΔmtsH mutant strain was incapable of growth on MMPA. Reanalysis of mtsD, mtsF, and mtsH mutants suggests that the preferred substrate for MtsD is dimethylsulfide, while the preferred substrate for MtsF is methanethiol. Methylated sulfur compounds play pivotal roles in the global sulfur and carbon cycles and contribute to global temperature homeostasis. Although the degradation of these molecules by aerobic bacteria has been well studied, relatively little is known regarding their fate in anaerobic ecosystems. In this study, we identify the genetic basis for metabolism of methylmercaptopropionate, dimethylsulfide, and methanethiol by strictly anaerobic methanogens of the genus Methanosarcina. These data will aid the development of predictive sulfur cycle models and enable molecular ecological approaches for the study of methylated sulfur metabolism in anaerobic ecosystems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methyl 3-(methylthio)propionate, 98%
Sigma-Aldrich
Methane, electronic grade, ≥99.998%
Sigma-Aldrich
Purine, 98%
Sigma-Aldrich
Methyl 3-(methylthio)propionate, ≥98%, FG
Supelco
Digoxigenin, analytical standard
Sigma-Aldrich
meso-2,3-Dimercaptosuccinic acid, ~98%
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous
Digoxigenin, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, corresponds U.S. Food chemicals codex (3rd Ed.), steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Carbon - Vitreous, tube, 50mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Sigma-Aldrich
Dimethyl sulfide, natural, ≥99%, FCC, FG
Supelco
Activated Charcoal Norit®, Norit® RBAA-3, rod
Sigma-Aldrich
Dimethyl sulfide, ≥99%
Sigma-Aldrich
Dimethyl sulfide, anhydrous, ≥99.0%
Sigma-Aldrich
Methane-12C, 13C-depleted, 99.9 atom % 12C
Sigma-Aldrich
Dimethyl sulfide, redistilled, ≥99%, FCC, FG
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%