Skip to Content
Merck
  • Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study.

Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study.

The Journal of bone and joint surgery. American volume (2014-01-17)
C Thomas Vangsness, Jack Farr, Joel Boyd, David T Dellaero, C Randal Mills, Michelle LeRoux-Williams
ABSTRACT

There are limited treatment options for tissue restoration and the prevention of degenerative changes in the knee. Stem cells have been a focus of intense preclinical research into tissue regeneration but limited clinical investigation. In a randomized, double-blind, controlled study, the safety of the intra-articular injection of human mesenchymal stem cells into the knee, the ability of mesenchymal stem cells to promote meniscus regeneration following partial meniscectomy, and the effects of mesenchymal stem cells on osteoarthritic changes in the knee were investigated. A total of fifty-five patients at seven institutions underwent a partial medial meniscectomy. A single superolateral knee injection was given within seven to ten days after the meniscectomy. Patients were randomized to one of three treatment groups: Group A, in which patients received an injection of 50 × 10⁶ allogeneic mesenchymal stem cells; Group B, 150 × 10⁶ allogeneic mesenchymal stem cells; and the control group, a sodium hyaluronate (hyaluronic acid/hyaluronan) vehicle control. Patients were followed to evaluate safety, meniscus regeneration, the overall condition of the knee joint, and clinical outcomes at intervals through two years. Evaluations included sequential magnetic resonance imaging (MRI). No ectopic tissue formation or clinically important safety issues were identified. There was significantly increased meniscal volume (defined a priori as a 15% threshold) determined by quantitative MRI in 24% of patients in Group A and 6% in Group B at twelve months post meniscectomy (p = 0.022). No patients in the control group met the 15% threshold for increased meniscal volume. Patients with osteoarthritic changes who received mesenchymal stem cells experienced a significant reduction in pain compared with those who received the control, on the basis of visual analog scale assessments. There was evidence of meniscus regeneration and improvement in knee pain following treatment with allogeneic human mesenchymal stem cells. These results support the study of human mesenchymal stem cells for the apparent knee-tissue regeneration and protective effects.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hyaluronic acid sodium salt from bovine vitreous humor
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,500,000-1,750,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,000,000-1,250,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 30,000-50,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 1,200
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 50,000-70,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 15,000-30,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,200,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 8,000-15,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 300,000-500,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 2,000,000-2,400,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 10,000-30,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 120,000-350,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, mol wt 70,000-120,000
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus equi, bacterial glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from rooster comb, avian glycosaminoglycan polysaccharide
Sigma-Aldrich
Hyaluronic acid sodium salt from Streptococcus zooepidemicus, bacterial glycosaminoglycan polysaccharide