Skip to Content
Merck
  • The organization of AMPA receptor subunits at the postsynaptic membrane.

The organization of AMPA receptor subunits at the postsynaptic membrane.

Hippocampus (2014-12-20)
Amanda L Jacob, Richard J Weinberg
ABSTRACT

AMPA receptors are the principal mediators of excitatory synaptic transmission in the mammalian central nervous system. The subunit composition of these tetrameric receptors helps to define their functional properties, and may also influence the synaptic trafficking implicated in long-term synaptic plasticity. However, the organization of AMPAR subunits within the synapse remains unclear. Here, we use postembedding immunogold electron microscopy to study the synaptic organization of AMPAR subunits in stratum radiatum of CA1 hippocampus in the adult rat. We find that GluA1 concentrates away from the center of the synapse, extending at least 25 nm beyond the synaptic specialization; in contrast, GluA3 is uniformly distributed along the synapse, and seldom extends beyond its lateral border. The fraction of extrasynaptic GluA1 is markedly higher in small than in large synapses; no such effect is seen for GluA3. These observations imply that different kinds of AMPARs are differently trafficked to and/or anchored at the synapse.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Aminomethyl)phosphonic acid, 99%
Sigma-Aldrich
Anti-Glutamate Receptor 2 & 3 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Glutamate Receptor 3 Antibody, clone 3B3, clone 3B3, Chemicon®, from mouse
Sigma-Aldrich
Anti-Glutamate receptor 1 Antibody, from rabbit, purified by affinity chromatography