Skip to Content
Merck
  • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

Acta biomaterialia (2013-12-18)
B Duan, E Kapetanovic, L A Hockaday, J T Butcher
ABSTRACT

Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
TissueFab® bioink , Alg(Gel)ma -Vis/525 nm
Sigma-Aldrich
TissueFab® - low endotoxin GelMA-UV bioink, 0.2 μm filtered, suitable for 3D bioprinting applications
Sigma-Aldrich
TissueFab® bioink , (Gel)ma -VIS/405nm, low endotoxin
Sigma-Aldrich
TissueFab® bioink , (GelAlgHA)MA Vis/405 nm, low endotoxin
Sigma-Aldrich
TissueFab® bioink , Alg(Gel)ma -UV/365 nm
Sigma-Aldrich
TissueFab® bioink Alg(Gel)ma -UV/365 nm
Sigma-Aldrich
TissueFab® bioink , (Gel)ma -UV/365 nm
Sigma-Aldrich
TissueFab® bioink kit, Fibronectin-UV/365nm
Sigma-Aldrich
TissueFab® bioink kit, (Gel)ma Laminin -UV/365 nm, low endotoxin
Sigma-Aldrich
TissueFab® bioink kit, (Gel)ma Fibrin (Vis/405), low endotoxin
Sigma-Aldrich
TissueFab® bioink kit, (Gel)ma Fibrin (UV/365), low endotoxin
Sigma-Aldrich
TissueFab® GelAlg − LAP Bioink, low endotoxin, 0.2 μm filtered, suitable for 3D bioprinting applications
Sigma-Aldrich
TissueFab® bioink kit, (Gel)ma Laminin -Vis/405 nm, low endotoxin