Skip to Content
Merck
  • Vitamin D and estrogen synergy in Vdr-expressing CD4(+) T cells is essential to induce Helios(+)FoxP3(+) T cells and prevent autoimmune demyelinating disease.

Vitamin D and estrogen synergy in Vdr-expressing CD4(+) T cells is essential to induce Helios(+)FoxP3(+) T cells and prevent autoimmune demyelinating disease.

Journal of neuroimmunology (2015-08-25)
Justin A Spanier, Faye E Nashold, Christopher G Mayne, Corwin D Nelson, Colleen E Hayes
ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune attack on the axon-myelin unit. A female MS bias becomes evident after puberty and female incidence has tripled in the last half-century, implicating a female sex hormone interacting with a modifiable environmental factor. These aspects of MS suggest that many female MS cases may be preventable. Mechanistic knowledge of this hormone-environment interaction is needed to devise strategies to reduce female MS risk. We previously demonstrated that vitamin D3 (D3) deficiency increases and D3 supplementation decreases experimental autoimmune encephalomyelitis (EAE) risk in a female-biased manner. We also showed that D3 acts in an estrogen (E2)-dependent manner, since ovariectomy eliminated and E2 restored D3-mediated EAE protection. Here we probed the hypothesis that E2 and D3 interact synergistically within CD4(+) T cells to control T cell fate and prevent demyelinating disease. The E2 increased EAE resistance in wild-type (WT) but not T-Vdr(0) mice lacking Vdr gene function in CD4(+) T cells, so E2 action depended entirely on Vdr(+)CD4(+) T cells. The E2 levels were higher in WT than T-Vdr(0) mice, suggesting the Vdr(+)CD4(+) T cells produced E2 or stimulated its production. The E2 decreased Cyp24a1 and increased Vdr transcripts in T cells, prolonging the calcitriol half-life and increasing calcitriol responsiveness. The E2 also increased CD4(+)Helios(+)FoxP3(+) T regulatory (Treg) cells in a Vdr-dependent manner. Thus, CD4(+) T cells have a cooperative amplification loop involving E2 and calcitriol that promotes CD4(+)Helios(+)FoxP3(+) Treg cell development and is disrupted when the D3 pathway is impaired. The global decline in population D3 status may be undermining a similar cooperative E2-D3 interaction controlling Treg cell differentiation in women, causing a breakdown in T cell self tolerance and a rise in MS incidence.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Sodium azide, BioXtra
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Phenol Red, ACS reagent
Sigma-Aldrich
1α,25-Dihydroxyvitamin D3, ≥99% (HPLC)
Sigma-Aldrich
Phenol Red, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
1α,25-Dihydroxyvitamin D3, ≥97.0% (HPLC)
Sigma-Aldrich
1α,25-Dihydroxyvitamin D2 solution, 50 μg/mL in ethanol, 95% (CP)
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%