Skip to Content
Merck
  • Thiol-mediated multiple mechanisms centered on selenodiglutathione determine selenium cytotoxicity against MCF-7 cancer cells.

Thiol-mediated multiple mechanisms centered on selenodiglutathione determine selenium cytotoxicity against MCF-7 cancer cells.

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry (2015-03-19)
Takao Tobe, Koji Ueda, Motozumi Ando, Yoshinori Okamoto, Nakao Kojima
ABSTRACT

Selenium (Se) is an essential antioxidative micronutrient but can exert cancer-selective cytotoxicity if the nutritional levels are too high. Selenodiglutathione (GSSeSG) is a primary Se metabolite conjugated with two glutathione (GSH) moieties. GSSeSG has been suggested to be an important molecule for cytotoxicity. Here, we propose the underlying mechanisms for the potent cytotoxicity of GSSeSG: cellular intake; reductive metabolism; production of reactive oxygen species; oxidative damage to DNA; apoptosis induction. GSSeSG rather than selenite decreased cell viability and induced apoptosis accompanied by increases in intracellular Se contents. Therefore, GSSeSG-specific cytotoxicity may be ascribed to its preferable incorporation. Base oxidation and strand fragmentation in genomic DNA preceded cell death, suggesting that oxidative stress (including DNA damage) is crucial for GSSeSG cytotoxicity. Strand breaks of purified DNA were caused by the coexistence of GSSeSG and thiols (GSH, cysteine, homocysteine), but not the oxidized form or non-thiol reductants. This implies the important role of intracellular thiols in the mechanism of Se toxicity. GSH-assisted DNA strand breaks were inhibited by specific scavengers for hydrogen peroxide or hydroxyl radicals. The GSSeSG metabolite selenide induced some DNA strand breaks without GSH, whereas elemental Se did so only with GSH. These observations suggest involvement of Fenton-type reaction in the absence of transition metals and reactivation of inert elemental Se. Overall, our results suggest that chemical interactions between Se and the sulfur of thiols are crucial for the toxicity mechanisms of Se.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutathione oxidized disodium salt, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Glutathione oxidized disodium salt, ≥98%, powder
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
L-Glutathione reduced, Vetec, reagent grade, ≥98%
Sigma-Aldrich
L-Cysteine, Vetec, reagent grade, 97%
Sigma-Aldrich
Nitric acid, ACS reagent, ≥90.0%
Sigma-Aldrich
L-Cysteine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.0%
Sigma-Aldrich
L-Cysteine, ≥97%, FG
Sigma-Aldrich
L-Cysteine, 97%
Sigma-Aldrich
L-Cysteine, BioUltra, ≥98.5% (RT)
Sigma-Aldrich
Selenous acid, 99.999% trace metals basis
Sigma-Aldrich
Selenous acid, 98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
SAFC
L-Cysteine
Sigma-Aldrich
DL-Homocysteine, ≥95% (titration)
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis