Skip to Content
Merck
  • Novel, Synergistic Antifungal Combinations that Target Translation Fidelity.

Novel, Synergistic Antifungal Combinations that Target Translation Fidelity.

Scientific reports (2015-11-18)
Elena Moreno-Martinez, Cindy Vallieres, Sara L Holland, Simon V Avery
ABSTRACT

There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone.

MATERIALS
Product Number
Brand
Product Description

Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
3-(Benzyldimethylammonio)propanesulfonate, BioXtra, ≥99.0% (HPCE)
Sigma-Aldrich
Paromomycin sulfate salt, powder, BioReagent, suitable for cell culture, potency: ≥675 μg per mg
Sigma-Aldrich
Paromomycin sulfate salt, ≥98% (TLC)
Sigma-Aldrich
Paromomycin sulfate salt, suitable for plant cell culture, BioReagent
Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodium bicarbonate, Vetec, reagent grade, 99%
Sigma-Aldrich
D-(+)-Glucose, Vetec, reagent grade, ≥99.5% (HPLC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Sodium malonate dibasic monohydrate, BioXtra
Sigma-Aldrich
Sodium malonate dibasic monohydrate, ≥98% (non-aqueous titration)
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
Sodium malonate dibasic, ≥97.0% (NT)
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Sodium oxalate, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium thiosulfate, purum p.a., anhydrous, ≥98.0% (RT)
Sigma-Aldrich
Sodium oxalate, puriss. p.a., ACS reagent, ≥99.5% (RT)
Sigma-Aldrich
Sodium oxalate, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium thiosulfate, ReagentPlus®, 99%
Sigma-Aldrich
Sodium oxalate, BioXtra