Skip to Content
Merck
  • Possibility of [1,5] sigmatropic shifts in bicyclo[4.2.0]octa-2,4-dienes.

Possibility of [1,5] sigmatropic shifts in bicyclo[4.2.0]octa-2,4-dienes.

The Journal of organic chemistry (2015-01-24)
Hannelore Goossens, Johan M Winne, Sebastian Wouters, Laura Hermosilla, Pierre J De Clercq, Michel Waroquier, Veronique Van Speybroeck, Saron Catak
ABSTRACT

The thermal equilibration of the methyl esters of endiandric acids D and E was subject to a computational study. An electrocyclic pathway via an electrocyclic ring opening followed by a ring flip and a subsequent electrocyclization proposed by Nicolaou [ Nicolaou , K. C. ; Chen , J. S. Chem. Soc. Rev. 2009 , 38 , 2993 ], was computationally explored. The free-energy barrier for this electrocyclic route was shown to be very close to the bicyclo[4.2.0]octa-2,4-diene reported by Huisgen [ Huisgen , R. ; Boche , G. ; Dahmen , A. ; Hechtl , W. Tetrahedron Lett. 1968 , 5215 ]. Furthermore, the possibility of a [1,5] sigmatropic alkyl group shift of bicyclo[4.2.0]octa-2,4-diene systems at high temperatures was explored in a combined computational and experimental study. Calculated reaction barriers for an open-shell singlet biradical-mediated stepwise [1,5] sigmatropic alkyl group shift were shown to be comparable with the reaction barriers for the bicyclo[4.1.0]hepta-2,4-diene (norcaradiene) walk rearrangement. However, the stepwise sigmatropic pathway is suggested to only be feasible for appropriately substituted compounds. Experiments conducted on a deuterated analogous diol derivative confirmed the calculated (large) differences in barriers between electrocyclic and sigmatropic pathways.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calcium carbonate, BioUltra, precipitated, ≥99.0% (KT)
Sigma-Aldrich
Calcium carbonate, ACS reagent, chelometric standard, 99.95-100.05% dry basis
Sigma-Aldrich
Calcium carbonate, BioReagent, suitable for insect cell culture, ≥99.0%