Skip to Content
Merck
  • Lipophilic prodrugs of apomorphine I: preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media.

Lipophilic prodrugs of apomorphine I: preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-12-17)
Nrupa Borkar, Boyang Li, René Holm, Anders E Håkansson, Anette Müllertz, Mingshi Yang, Huiling Mu
ABSTRACT

Apomorphine, a subcutaneously administered drug for Parkinson's disease with short half-life requires frequent administration leading to patient non-compliance. This study aimed at synthesising and purifying lipophilic diesters of apomorphine, and investigating their in vitro degradation in biorelevant media before and after incorporating them into self-emulsifying drug delivery systems (SEDDS) for oral delivery. Two apomorphine diester prodrugs were synthesised: dilauroyl apomorphine (DLA) and dipalmitoyl apomorphine (DPA). The in vitro enzymatic hydrolysis of diesters was performed using biorelevant media with pancreatin to catalyse the diester degradation. The synthesised and purified diesters were found to be free from reactants as impurities confirmed by LC/MS and NMR. DLA and DPA were degraded into corresponding monoesters and free apomorphine within 5 min after adding pancreatin, leaving about 4% and 28% of the intact diester, respectively. The incorporation of the diesters into SEDDS reduced the enzymatic degradation of diesters. In addition, the chain length of diester and the type of oil used in formulations affected diester hydrolysis. The lipophilic apomorphine diesters were substrates of lipases present in pancreatin, and the degree of diester degradation can be controlled by selecting suitable lipid excipients. Therefore, diesters of apomorphine are promising prodrugs for oral delivery aiming at lymphatic transport.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triethylamine, purum, ≥99% (GC)
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium sulfate, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Sodium sulfate, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Heptane, biotech. grade, ≥99%
Sigma-Aldrich
Sodium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Sodium sulfate, ≥99.0%, suitable for plant cell culture
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
Sodium sulfate, BioXtra, ≥99.0%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Heptane, suitable for HPLC, ≥99%