Skip to Content
Merck
  • The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma.

The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma.

International journal of pharmaceutics (2014-07-23)
Seyedeh Hoda Alavizadeh, Ali Badiee, Shiva Golmohammadzadeh, Mahmoud Reza Jaafari
ABSTRACT

SPI-077, cisplatin stealth liposome, is the best illustration of poor cisplatin release from liposomes and the subsequent negligible therapeutic activity. For this reason, optimizing drug release kinetics is desirable. In this report, cisplatin was encapsulated in liposomes composed of different phosphatidylcholines with various phase transition temperatures (Tm) (HSPC, DPPC, DMPC, soy phosphatidylcholine (SPC)), cholesterol and mPEG2000-DSPE. In vitro cytotoxicity studies indicated that lowering Tm of lipids increases cisplatin release; the highest cytotoxicity was observed in SPCs. Cisplatin plasma concentration was also sensitive to the transition temperature. The highest platinum concentration observed after treatment with HSPC and DPPC liposomes, whilst the lowest was observed with SPC. HSPC and DPPC containing liposomes showed the highest therapeutic efficacy and survival with DPPC exhibited better efficacy in mouse model of C26. It seems that DPPC with Tm (41.5°C) nearly, or close to body temperature maintains good drug retention in blood circulation. Upon extravasation through permeable tumor microvasculature, it gradually releases its payload in the tumor area better than HSPC, with a greater Tm of 55°C. Our data suggests, the choice of Tm for lipid mixture directed to a considerable extent the rate of cisplatin elimination from plasma and therapeutic effects.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, ≥99% (TLC)
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis