Skip to Content
Merck
  • Enhancing Phytoremediation Potential of Pennisetum clandestinum Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide.

Enhancing Phytoremediation Potential of Pennisetum clandestinum Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide.

International journal of phytoremediation (2015-01-13)
Ambrose Okem, Manoj G Kulkarni, Johannes Van Staden
ABSTRACT

The use of plant growth regulators (PGRs) and biostimulants to enhance phytoextraction is gaining popularity in phytoremediation technology. This study investigated the stimulatory effects of smoke-water (SW), a smoke-derived compound karrikinolide (KAR1) and other known plant growth regulators (PGRs) [gibberellic acid (GA3), kinetin (Kin) and indole-3-butyric acid (IBA)] to enhance the phytoextraction potential of Pennisetum clandestinum. Pennisetum clandestinum seedlings were grown for 10 weeks in vermiculite using Hoagland's nutrient solution and were treated with cadmium (Cd) (2, 5, and 10 mg L(-1)) and SW, KAR1 and PGRs. KAR1 exhibited positive effects on shoot and root dry weight (140 and 137 mg respectively) at the highest concentration of Cd (10 mg L(-1)) compared to all the other treatments. KAR1 and SW treatments used in the present study significantly improved the phytoextraction potential of P. clandestinum (602 and 575 mg kg(-1) respectively) compared to the other tested PGRs. This is the first report on the use of SW and KAR1 to enhance phytoremediation potential in P. clandestinum. Further studies are needed to elucidate the exact mechanisms of smoke constituents involved in phytoextraction potential of plant species.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Kinetin solution, 1 mg/mL, BioReagent, suitable for plant cell culture