Skip to Content
Merck
  • In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization.

In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization.

Science (New York, N.Y.) (2014-05-17)
Alexandra I Lupulescu, Jeffrey D Rimer
ABSTRACT

The growth mechanism of silicalite-1 (MFI zeolite) is juxtaposed between classical models that postulate silica molecules as primary growth units and nonclassical pathways based on the aggregation of metastable silica nanoparticle precursors. Although experimental evidence gathered over the past two decades suggests that precursor attachment is the dominant pathway, direct validation of this hypothesis and the relative roles of molecular and precursor species has remained elusive. We present an in situ study of silicalite-1 crystallization at characteristic synthesis conditions. Using time-resolved atomic force microscopy images, we observed silica precursor attachment to crystal surfaces, followed by concomitant structural rearrangement and three-dimensional growth by accretion of silica molecules. We confirm that silicalite-1 growth occurs via the addition of both silica molecules and precursors, bridging classical and nonclassical mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silica, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Silica, mesostructured, MSU-F (cellular foam)
Sigma-Aldrich
Aluminosilicate, mesostructured, MCM-41 (hexagonal)
Sigma-Aldrich
Zeolite