Skip to Content
Merck
  • Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

Journal of biomedical nanotechnology (2014-05-09)
Rong Huang, Hongbing Deng, Tongjian Cai, Yingfei Zhan, Xiankai Wang, Xuanxuan Chen, Ailing Ji, Xueyong Lil
ABSTRACT

Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lactic Dehydrogenase, recombinant from E. coli, ≥90 U/mg
Sigma-Aldrich
L-Lactic Dehydrogenase from bovine heart, Type XVII, buffered aqueous glycerol solution, ≥400 units/mg protein
Sigma-Aldrich
Chitosan, high molecular weight
Sigma-Aldrich
L-Lactic Dehydrogenase from bovine heart, 1000 units/mL
Sigma-Aldrich
Chitosan, from shrimp shells, practical grade
Sigma-Aldrich
Chitosan, medium molecular weight
Sigma-Aldrich
Chitosan, low molecular weight
Sigma-Aldrich
Chitosan, from shrimp shells, ≥75% (deacetylated)
Sigma-Aldrich
L-Lactic Dehydrogenase from porcine heart, ammonium sulfate suspension, ≥200 units/mg protein
Sigma-Aldrich
L-Lactic Dehydrogenase from bovine muscle, Type X, ammonium sulfate suspension, ≥600 units/mg protein
Sigma-Aldrich
L-Lactic Dehydrogenase from bovine heart, Type III, ammonium sulfate suspension, ≥500 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, ≥20000 units/mg protein, lyophilized powder
Sigma-Aldrich
Chitosan from shrimp shells, low-viscous
Sigma-Aldrich
L-Lactic Dehydrogenase from rabbit muscle, Type II, ammonium sulfate suspension, 800-1,200 units/mg protein
Sigma-Aldrich
L-Lactic Dehydrogenase from rabbit muscle, Type XI, lyophilized powder, 600-1,200 units/mg protein
Sigma-Aldrich
Catalase from human erythrocytes, ≥90% (SDS-PAGE), buffered aqueous solution, ≥30,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, aqueous solution, ≥30,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, lyophilized powder, 2,000-5,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, aqueous suspension, 40,000-60,000 units/mg protein (E1%/405)
Sigma-Aldrich
Catalase from bovine liver, aqueous suspension, 10,000-40,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, lyophilized powder, ≥10,000 units/mg protein
Sigma-Aldrich
Catalase from bovine liver, powder, suitable for cell culture, 2,000-5,000 units/mg protein
Sigma-Aldrich
Catalase from Aspergillus niger, ammonium sulfate suspension, ≥4,000 units/mg protein