Skip to Content
Merck
  • Antiferromagnetic porous metal-organic framework containing mixed-valence [Mn(II)4Mn(III)2(μ4-O)2]10+ units with catecholase activity and selective gas adsorption.

Antiferromagnetic porous metal-organic framework containing mixed-valence [Mn(II)4Mn(III)2(μ4-O)2]10+ units with catecholase activity and selective gas adsorption.

Inorganic chemistry (2012-03-16)
Paramita Kar, Ritesh Haldar, Carlos J Gómez-García, Ashutosh Ghosh
ABSTRACT

A multifunctional porous metal organic framework based on mixed-valence hexa-nuclear [Mn(III)(2)Mn(II)(4)O(2)(pyz)(2)(C(6)H(5)CH(2)COO)(10)] (pyz = pyrazine) units has been synthesized. The complex has been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis, and variable-temperature magnetic measurements. The structural analysis reveals that the bidentate pyz molecules connect each [Mn(6)] unit to its four [Mn(6)] neighbors through the peripheral Mn(II) centers, giving rise to a three-dimensional (3D) distorted diamond-like porous framework. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of dominant antiferromagnetic interactions within the discrete [Mn(6)] cluster that have been fitted with a model containing three exchange constants developed for the complex (J(1) = -8.6 cm(-1), J(2) = -3.9 cm(-1), and J(3) = -100.0 cm(-1)). Using 3,5-di-tert-butyl catechol (3,5-DTBC) as the substrate, catecholase activity of the complex has been studied; the turn over number is determined to be of 2547 h(-1) in acetonitrile. This porous compound shows remarkable selectivity for adsorption of CO(2) over N(2) that may be correlated with the effect of window flexibility of the pore to the corresponding adsorbate molecules.