Skip to Content
Merck
  • Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism.

Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism.

Applied and environmental microbiology (2020-08-10)
Lucas Proust, Eloi Haudebourg, Alain Sourabié, Martin Pedersen, Iris Besançon, Véronique Monnet, Vincent Juillard
ABSTRACT

Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.