Skip to Content
Merck
  • Assessment of temperature effects on beta-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: relations between structural changes and antioxidant properties.

Assessment of temperature effects on beta-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: relations between structural changes and antioxidant properties.

Archives of biochemistry and biophysics (2007-02-27)
Philippe Rondeau, Sergio Armenta, Henri Caillens, Serge Chesne, Emmanuel Bourdon
ABSTRACT

Structural modifications of bovine serum albumin (BSA) induced by heating, and the involvement of glycation of albumin in such processing were studied by using Fourier transform infrared spectroscopy (FTIR) and polyacrylamide gel electrophoresis (PAGE). For native BSA, heating treatments gave rise to beta structures which were amplified to the detriment of alpha-helix form, and which were associated with increased aggregation. A very high correlation was obtained between FTIR Amide I band evolution and aggregation rate parameters, showing the contribution of beta-form in aggregates formation. We further assessed the effect of glycation on protein sensibility to heating treatments. A reduction of conformational changes and aggregation processes was demonstrated for the glycated form of the protein. The antioxidant properties of albumin were evaluated using two different techniques assessing metal binding and free radical neutralizing capacities of the protein. Associations between structural changes in BSA induced by the thermal treatment and its antioxidant activities were established.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
m-Aminophenylboronic acid–Agarose, saline suspension