Skip to Content
Merck

Sour Sensing from the Tongue to the Brain.

Cell (2019-09-24)
Jin Zhang, Hao Jin, Wenyi Zhang, Cheng Ding, Sean O'Keeffe, Mingyu Ye, Charles S Zuker
ABSTRACT

The ability to sense sour provides an important sensory signal to prevent the ingestion of unripe, spoiled, or fermented foods. Taste and somatosensory receptors in the oral cavity trigger aversive behaviors in response to acid stimuli. Here, we show that the ion channel Otopetrin-1, a proton-selective channel normally involved in the sensation of gravity in the vestibular system, is essential for sour sensing in the taste system. We demonstrate that knockout of Otop1 eliminates acid responses from sour-sensing taste receptor cells (TRCs). In addition, we show that mice engineered to express otopetrin-1 in sweet TRCs have sweet cells that also respond to sour stimuli. Next, we genetically identified the taste ganglion neurons mediating each of the five basic taste qualities and demonstrate that sour taste uses its own dedicated labeled line from TRCs in the tongue to finely tuned taste neurons in the brain to trigger aversive behaviors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DL-Tartaric acid, ≥99%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
L-Glutamic acid monopotassium salt monohydrate, puriss. p.a., ≥99.0%
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Inosine 5′-monophosphate disodium salt hydrate, from yeast, Grade III, ≥98% (HPLC)
Sigma-Aldrich
Inosine, ≥99% (HPLC)