Skip to Content
Merck

3D Bioprinting

 Illustration of tissue engineering with human ear and nose created via 3D bioprinting

3D bioprinting is an additive manufacturing process with biomaterials, living cells, and active biomolecules to fabricate structures that imitate natural tissue characteristics. Bioprinting differs from 3D printing primarily by the addition of living cells to non-toxic hydrogels that mimic the extracellular matrix environment to support cell adhesion, proliferation, and differentiation after printing. 

The bioprinting process begins with 3D imaging to obtain the exact dimensions of the tissue. Similar to conventional 3D printing, a digital model is created with layer-by-layer instructions to make a physical 3D object. In order to optimize cell viability and ensure a printing resolution adequate for homogenous distribution of cells, sterile printing conditions are required. Depending on the application, the biomaterial, e.g. alginate, collagen, gelatin, or hyaluronan, to support cell growth is combined with living cells to form the bioink. Using a highly controlled, layer-by-layer approach, bioink is deposited with extrusion-, inkjet- or laser-based 3D printing technique. These 3D tissue constructs solidify by UV light, chemically stimulation, or heat for a stable growth environment. 

Due to its high degree of control, 3D bioprinting has emerged as a key research technique for drug testing and clinical trials, functional organ replacement, regenerative medicine, and other bio printing applications for cosmetic and personal care. Researchers are actively developing new materials and printing methods for 3D printing in medicine to be able to tune the properties of the printed constructs and more closely mimic the mechanical properties of skin, bone and cartilage, neural, cardiac, muscular, and dental tissue types.



Featured Categories

Polyethylene glycol chemical structure"
Polyethylene Glycol (PEGs and PEOs)

Discover our selection of polyethylene glycol (PEGs) and PEG derivatives in a wide range of molecular weights for all your PEGylation needs and applications.

Shop Products
Illustration showing process of creating human heart layer for layer with bioink using 3D printer
3D Bioprinting

Biocompatible materials and bioinks optimized for 3D bioprinting and tissue engineering ensure high printing fidelity and cell viability.

Shop Products
Vials of colorful biomedical polymers being filled with a pipette
Biomedical Polymers

We offer an extensive range of natural and synthetic biomedical polymers with advanced properties suitable for all your biomedical applications.

Shop Products
Water droplets on blue superhydrophobic polymer
Hydrophobic Polymers

Explore our portfolio of versatile hydrophobic polymers to support your adhesion, coating, fiber, film, engineered plastic and biomedical applications.

Shop Products

The bioprinting process begins with 3D imaging to obtain the exact dimensions of the tissue. Similar to conventional 3D printing, a digital model is created with layer-by-layer instructions to make a physical 3D object. In order to optimize cell viability and ensure a printing resolution adequate for homogenous distribution of cells, sterile printing conditions are required. Depending on the application, the biomaterial, e.g. alginate, collagen, gelatin, or hyaluronan, to support cell growth is combined with living cells to form the bioink. Using a highly controlled, layer-by-layer approach, bioink is deposited with extrusion-, inkjet- or laser-based 3D printing technique. These 3D tissue constructs solidify by UV light, chemically stimulation, or heat for a stable growth environment.

Due to its high degree of control, 3D bioprinting has emerged as a key research technique for drug testing and clinical trials, functional organ replacement, regenerative medicine, and other bio printing applications for cosmetic and personal care. Researchers are actively developing new materials and printing methods for 3D printing in medicine to be able to tune the properties of the printed constructs and more closely mimic the mechanical properties of skin, bone and cartilage, neural, cardiac, muscular, and dental tissue types.

Document Search
Looking for More Specific Information?

Visit our document search for data sheets, certificates and technical documentation.

Find Documents

Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?