Skip to Content
Merck
All Photos(1)

Key Documents

X4625

Sigma-Aldrich

D-Xylulose

≥95% (HPLC), syrup

Synonym(s):

D-threo-Pentulose

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C5H10O5
CAS Number:
Molecular Weight:
150.13
Beilstein:
1723052
MDL number:
UNSPSC Code:
12352201
PubChem Substance ID:
NACRES:
NA.25

Quality Level

Assay

≥95% (HPLC)

form

syrup

technique(s)

HPLC: suitable

color

faintly yellow

solubility

water: 50 mg/mL, clear, faintly yellow to yellow

storage temp.

−20°C

SMILES string

OCC1(O)OC[C@H](O)[C@H]1O

InChI

1S/C5H10O5/c6-2-5(9)4(8)3(7)1-10-5/h3-4,6-9H,1-2H2/t3-,4+,5?/m0/s1

InChI key

LQXVFWRQNMEDEE-PYHARJCCSA-N

Looking for similar products? Visit Product Comparison Guide

Biochem/physiol Actions

D-xylulose is a monosaccharide, converted from xylitol in the glucuronate pathway.

Other Notes

To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nichole F Huntley et al.
PloS one, 13(10), e0205913-e0205913 (2018-10-26)
It is important to understand if, and to what extent, the pig can utilize xylose as an energy source if xylanase releases free xylose in the small intestine. The experimental objectives were to determine the effects of industry-relevant dietary xylose
Tien Anh Ngo et al.
Journal of the American Chemical Society, 138(9), 3012-3021 (2016-02-18)
We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the
César Fonseca et al.
Enzyme and microbial technology, 48(6-7), 518-525 (2011-11-25)
Ethanolic fermentation of lignocellulose raw materials requires industrial xylose-fermenting strains capable of complete and efficient D-xylose consumption. A central question in xylose fermentation by Saccharomyces cerevisiae engineered for xylose fermentation is to improve the xylose uptake. In the current study
Vinit Choudhary et al.
Carbohydrate research, 368, 89-95 (2013-01-29)
We present electronic structure calculations on the isomerization and epimerization of xylose to xylulose and lyxose, respectively, by a zeolite Sn-BEA model at the MP2 and B3LYP theory levels. Benchmarking calculations at the CCSD(T) theory level are also presented. We
Mingyong Xiong et al.
Bioresource technology, 102(19), 9206-9215 (2011-08-13)
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service